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1. INTRODUCTION

Let C[a, b] denote the set ofcontinuous (and bounded if (a, b) = (- 00, 00»
functions defined on [a, b]. Let .!l' be a linear operator which maps C[a, b]
into itself and denote the transform of fE C[a, b] by .!l'(f; x) E C[a, b].

An important subclass of such operators is the class of positive linear
operators. This class of operators has, in the past, received considerable
attention. In particular, they have been widely investigated in regards to (1)
the convergence of sequences of approximating functions {~(f; x)} to f(x)
in the Tchebycheff norm and (2) the determination of the degree of
convergence for such sequences.

Korovkin, [3], investigates positive linear operators from both these
standpoints. In connection with the former he presents some surprisingly
elegant necessary and sufficient conditions for a sequence of positive linear
operators to converge uniformly to f(x) E era, b]. For the question of degree
of convergence, he considers sequences of positive operators {9;.(f; x)} where
9;.(f; x) is a trigonometric polynomial of degree n andfis periodic. He shows
that for such sequences, the degree of convergence to f is not better than
O(n-2) (except possibly for some trivial functions) no matter how smoothfis.

In a more specialized framework, P. Butzer, [1], considers sequences of
positive linear operators {.non} which have the representation

£..(f; x) = r f(u) H(n(u - x» du = r f(u + x) H(nu) duo (1.1)
-co -co

* This paper is, in part, extracted from the author's Ph.D. thesis [2], written under the
direction of Prof. John R. Rice.
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(1.2)

The generating kernel H(u) is a positive even function, continuous at u = 0
and absolutely integrable with

(oo H(u) du = 1.

In determining the degree of convergence of the operators £'", Butzer
shows that ifj(x) is bounded and absolutely integrable on (- 00, (0), then the
following asymptotic expansion for the difference £',,(f; x) - j(x) holds for
each x, where j<2kl exists and is #0:

r 2k [£. . )_ _k~ M 2t!(2iJ(X)] _ M 2k j<2
k
l(X)

n~~ n n(f; x j(x) i~ (2i)! n2i - (2k)! .

The constants M 2i are the even moments of H(t):

M 2i = r t 2iH(t) dt,
-<Xl

for i = 1,2,... , 2k. We see that for the case k = I, £'n(f; x) - j(x) is exactly
of order O(n-2) if j"(x) # O.

Hence, for the positive linear operators investigated by Butzer, as well as
as the positive trigonometric polynomial operators considered by Korovkin,
the degree of approximation cannot be improved for any interesting classes
of functions. Thus, if a better degree of approximation is to be achieved with
either type of operator, the condition of positivity must be removed. This
fact, then, raises the question of how an effective construction of a sequence
{~} of nonpositive trigonometric polynomial operators of degree n or a
sequence {£'n} of nonpositive operators of the form (1.1) can be produced,
which assures a degree of convergence better than n-2 for large classes of
functions. For example, if we let M 2 = 0 in (1.2), then with k = 2 and
j(4l(X) # 0, the difference £',,(/; x) - j(x) has exact order O(n-4); and in
general, if M 2i = 0, i = I,... , k - I, then £',,(f; x) - j(x) has exact order
O(n-2k). But in order that the moments M2i be zero, H(u) must become
negative, and hence define nonpositive operators.

With this motivation in mind, we consider, in general, linear operators of
the form

.fi7n(f; x) = r f(t) K,,(t - x) dt,
-a

0< a":;; 00,

where 1 and Kn are continuous and 2a-periodic (or bounded, if a = (0)
functions and Kn is symmetric; We study the effect ofallowing K..(u) to become
negative in a prescribed manner, i.e., to oscillate finitely many times across
the u axis. The definition of such nonpositive kernels and corresponding
nonpositive operators .fi7" is made precise in Section 2.
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The investigation is presented in two parts. This paper (Part I-Conver
gence) is concerned with the determination of necessary and sufficient
conditions for the sequence of approximating functions {2n(f; x)} to converge
uniformly to f(x). A subsequent paper (Part II-Degree of Approximation)
deals with the question of degree of convergence in the case when .ft'..(f; x) is
a trigonometric polynomial of degree n and when the operators 2 n are
defined by kernels Kit) generated by one kernel function H(t) thus:
Kn(t) = nH(nt). A method for constructing nonpositive operators is also
discussed in Part II and some examples are given.

2. DEFINITIONS

For °< a < 00, let Ca denote the set of continuous, 2a-periodic (or
bounded, if a = 00) functions defined on the real line. For fE Ca , IlfII
denotes the Tchebycheff norm off, i.e., Ilfll = lub If(x)l.

A number 0: is called a simple zero of a functionfE Ca if f(o:) = °and if
for some € > 0, 0: - € < '1 < 0: < '2 < 0: + € implies fa1)f('2) 01= 0,
sgnUa1)] = -sgnUa2)]. If f has exactly k simple zeros in (0, a), then
O:i denotes the i-th zero, i.e., °< 0:1 < ... < O:k are the k simple zeros of
f Similarly, if fn E Ca and if fn has exactly simple zeros in (0, a), then O:ni ,
i = 1,... , k, denote these zeros in their natural order.

Let J-L(t) be an analytic, even function defined on [-a, a] such that J-L(O) = °
and J-L(t) is strictly increasing on [0, a]. We denote the j-th J-L-moment of
fE Ca by Mj(J-L,f), i.e.,

M;(J-L,j) = r J-Lj(t)f(t) dt,
-a

j = 0, 1,...

and set Mo(f) = Mo(J-L, f) whenever convenient (ifa = 00, the above integral
might not exist for somefE Ca). We note that two important functions which
satisfy the definition of J-L(t) are t 2 and sin2 t/2.

DEFINITION 1. A function K(t) E Ca , °< a < 00, is called a kernel if

(i) K(t) = K(-t) (symmetry),

(ii) Mo(K) = 1 (normalization).

If, in addition, K(t) has exactly k simple zeros O:i, i = 1,2,... , k, in (0, a) and
for some J-L,

(iii) Mj(J-L, K) = 0, j = 1,2,... , k,

then K(t) is called a 2k-zero kernel with respect J-L and is denoted by Klkl(t).
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DEFINITION 2. A sequence of 2k-zero kernels, {KAkl }, is said to peak if
limn->oo OI.n k = O.

Let .!f? : Ca ---+ Ca denote the linear operator

.!f?(f; x) = r feu) K(u - x) du,
-a

where K is a kernel. We note that since/, K E Ca , !£'(f; x) may be written in
the form

.!f?(f; x) = r f(x + u) K(u) duo
-a

DEFINITION 3. If K(k)(t) is a 2k-zero kernel, then the corresponding
operator .!f?(kl is called a 2k-zero operator. If a sequence {K~'} of 2k-zero
kernels peaks, the corresponding sequence {!£,~kl} is said to peak.

When we speak of the convergence of a sequence of operators {!£,~k)}, we
mean the convergence of sequences {!£,~kl(f; X)},jE Ca'

3. CONVERGENCE OF 2k-ZERO OPERATORS

We now consider the question of convergence of a sequence of 2k-zero
operators, {!£'Akl}, for all fE Ca , 0 < a:::;;; 00. Specifically, in Theorem la
we give sufficient conditions for {!£,~kl(f; x)} to converge uniformly to j(x).
Theorem 1b is a partial converse to Theorem la.

These results, however, do not give any definitive information concerning
the structure of the associated kernels, K:!'), themselves, except in a rather
general sense. Theorems 2 and 3 yield sufficient conditions for convergence
in terms of more specific properties of the kernels KAkl. In particular, we show
that uniform convergence is assured for any sequence of 2-zero operators
{.!f?~l)} if the sequence of associated kernels, {KAlI}, peaks and if KAlI(t) satisfies
a monotonicity condition for each n. For sequences {!£'~)}, k ~ 2, uniform
convergence is assured if the associated kernels, K~k), meet the above two
requirements, and in addition, their zeros satisfy certain asymptotic separa
tion conditions.

Preliminary Results

We first state without proof some basic facts about kernels (see [2]):

(1) K(kl(O) ~ 0, k ~ O.

(2) K(kl(t) has exactly 2k simple zeros, ±OI.i' i = 1,2,... , k, in (-a, a).



APPROXIMATION WITH KERNELS OF FINITE OSCILLATIONS 217

(3) If K is a kernel and satisfies condition (iii) of Definition 1, then K
must have at least 2k simple zeros in (-a, a). (Note that in the definition of a
2k-zero kernel we assume (iii) holds and Klkl(t) has exactly k simple zeros in
(0, a).)

(4) If the sequence {K~k)} peaks, then for every 0 > 0,

lim f I K~k)(t)! dt = 0,
n~oo [tl ~8

k ;?; O.

The following two facts concerning functions ;.t(t) as in Section 2 are also
needed.

(5) Let {xn} and {Yn} be null sequences of positive numbers and let ;.t(t)
be as in Section 2. Then, for some integer r ;?; I,

In fact, if {Yn/xn} is bounded, then for large n,

r?-,: 1, C.r *0,

from which the asserted equality follows. A similar argument proves it if
{Yn/xn} is unbounded.

(6) Let {xn} and { Yn} be null sequences with °< Yn < Xn and let ;.t(t)
be as in Section 2. Then

lim~ < I implies
1l---')c() X n

We have, for some Cr # 0, r ?-': 1, and for all large n,

J:: fL(t) dt
(xn - Yn) fL(Xn) 00

(xn - Yn) L CiXn i

i=r

~ (1 + Yn + ... + (A)') + f ~iX~-r (1 + Yn + ... + (~)i)
r + 1 Xn Xn i=r+1 1+ 1 Xn Xn

00

+ " i-rCr L. CiXn
i==r+l
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The two last infinite sums converge to °as n -- 00, and hence

We now may state:

THEOREM Ia. If{K~k)} peaks and{Mo(1 K~k) I)} is bounded, then {2~k)(f; x)}
converges uniformly to f(x) E Ca as n -- 00.

A partial converse to this theorem is:

THEOREM lb. If {2~k)(f; x)} converges uniformly to f(x) E Ca , then
{Mo(1 K~k) I)} is bounded.

The proofs of these theorems are omitted (see [2]). We note only that
Theorem Ia follows from Fact 4, and Theorem lb follows from the Uniform
Boundedness Principle and the fact that for the norm of the operators 2~k)

we have II 2~k) II = MoG K~k) I).

2-~ero (Jperators

Now let us examine more closely the relationship between the uniform
convergence of a sequence of operators {2~k)} and the behavior of the
sequences of zeros ±CXni , i = 1,... , k, of the associated kernels K~k)(t).

First, consider the case when k = 1 and define

Rn = r I K~I)(t)1 dt.
"nl

(3.1)

Since the function ft(t) corresponding to the K~l) is increasing on [0, al, by
the first mean value theorem of the integral calculus there is a gn E (0, cxnl)

and a ~n E (CXnl , a) such that

We obtain as an immediate corollary to Theorems Ia and 1b:

COROLLARY 1. Suppose the sequence {2~1)} peaks. Then a necessary and
sufficient condition that {'p~l)(f; x)} converge uniformly to f(x) is that
ft(gn) = (J(ftan) - ft(gn».
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Proof We have

o = r",,(t) K~l)(t) dt = ""(~n)(Rn + !) - ""an) Rn
o

and hence Rn = !""(~n)/(""an) - ""(~n»' Therefore, Rn is uniformly bounded
if, and only if, ""(~n) = O(""an) - ""(~n», and the corollary follows from
Theorems la and 1b.

A more descriptive sufficient condition for the uniform convergence of
2-zero operators, is given by the following

THEOREM 2. Let {'p~l)} be a sequence of 2-zero operators which peaks. If
the associated kernels K~l)(t) decrease on [0, anI] for each n, then {'p~l)(f; x)}
converges uniformly to f(x) E ea •

Proof Let Rn be defined by (3.1) and hn > 0 by

(3.2)

There is a Vn such that hn = K~l)(vn)' The situation is illustrated in Fig. 1.

K~) (t)

FIG. 1. 2-zero kernels.

We establish the inequality

(3.3)



220

From (3.2) we have

HOFF

rn

[K~l)(t) - hnJ dt = rn1

[hn - K~l)(t)J dt.
o ~

Hence,

rn1

jt(t)[K~l)(t) - hnJ dt
o

~ jt(vn)rn

[K~l)(t) - hnJ dt - jt(vn)rn1

[hn - K~l)(t)J dt = 0
o ~

which establishes (3.3). From inequality (3.3) we then obtain

Now let Cn be such that

(3.5)

By Fact 6 there exists a;) < 1 such that Cn ~ ;) for all n. Therefore, from (3.2),
(3.4), and (3.5) we have

o = tM1(p., K~l» = rp.(t) K~)(t) dt
o

< cnp.(cxn1)(Rn + !) - P.(CXnl) Rn

= - jt(CXnl)[(I - cn) Rn - !cnJ·

Hence, since jt(cxn1) > 0, we must have Rn < cn /[2{l - cn)]. But this implies

M (I K<t) I) = 4R + 1 < 1 + Cn s:: 1 + ;)
o n n 1 - Cn ~ 1 - ;) .

The theorem follows now immediately from Theorem la.
Clearly, the hypothesis that K:!)(t) is decreasing on [0, CXnl] is stronger than

necessary for the conclusion of Theorem 2 to hold. A weaker, although less
direct, property can replace the monotonicity condition. This property is
derived from our method of proof in Theorem 2. Let Rn , Cn , and 0 be as
in the proof of Theorem 2 and let KA1)(t) be such that there is an 7J > 0, a
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nonnegative number p < 1/8, and for each fl, an hn > 0 such that
hnCXnl < pRn + YJ and

Then we see that an inequality similar to (3.4) holds, so that

o = tMl(fL, K~l» = rnl

fL(t) K~l)(t) dt - rfL(t) I K~l)(t)1 dt
o ~nl

Therefore, Rn < YJOJ(l - 8p), and hence {Mo(1 K~l) I) is uniformly bounded.
On the other hand, it is easy to give an example of a sequence of 2-zero

operators which peaks, but whose associated kernels do not decrease on
[0, CXnl] and {Mo(1 K~l) I)} is unbounded. Let fL(t) = t 2 and let

0< Un < Vn < Hln < Q.

Then define K~l)(t) as the polygonal function shown in Fig. 2.

o

FIG. 2. Construction of 2-zero kernels with {Mo(1 K~') I)} unbounded.

For K~l) to be a 2-zero kernel, it must satisfy the conditions Mo(K~l» = 1
and M l(t 2, K~l» = O. This yields two linear equations in the unknowns hn
and t n • Solving for hn , we obtain (see [2])

h
n

= 7wn2 + IOwnvn + 7vn2
•

(vn - un)(w" - un)(7wn + tun + IOvn)
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Now set u" = 0(1) and W" - u" = o(u,,), Then {K~l)} peaks, and

as n ---->- 00.

But this implies {Mo(1 K~l) I)} is unbounded. By Theorem Ib, the sequence
of approximating functions {~~1)(f; x)} defined by the kernels K~l)(t) fails
to converge uniformly to J, for some f E Ca •

2k-Zero Operators, k ~ 2

We now direct our attention to 2k-zero operators when k ~ 2. We first
show, by example, that conditions as in Theorem 2 are not enough to assure
uniform convergence to f when k ~ 2. Let k = 2, t-t(t) = t 2, and
o< u" < v" < Wn < a. Let K~2)(t) be as shown in Fig. 3.

K~) (t)

/

a

FIG. 3. Construction of 4-zero kernels with {MoCj K~') J)} unbounded.

For K~2)(t) to be a 4-zero kernel, it must satisfy Mo(K~2)) = 1 and
Mlt2, K~2)) = O,j = 1,2. This yields three linear equations in the unknowns
h" , I" , and d" :

(3.6)

[
2 (f(vn

+w
n
)/2 fw

n
)]+ W _ V t2j(t - v,,) dt - t 2J(t - w,,) dt d" = OJ,

" n Vn (Vn+Wn) /2
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j = 0, 1,2, where 80 = t, 81 = 82 = 0. Now let Un = 0(1) and Wn - Un =
o(un). Then {K~2)(t)} peaks, K~2)(t) decreases on [0, anI] = [0, Un], and
Vn = O(un), Wn = O(un). Solving (3.6), we obtain

d = 4un3(vn - un) Dn
n Un(Vn - Un)(Wn - Vn)(Wn - Un) Dn'

where Dn' ,....., unDn . Hence,

(Wn - Vn)(Wn - Un) Dn'

fa (2)( ) d - I ( ) d 2unKn t t - 2 Wn - Vn n""'" -+ OCJ
V n Wn - Un

as n -+ 00,

which implies {Mo(1 K~2) I)} is unbounded. Therefore, even though {K~2)(t)}

peaks and K~2)(t) decreases on [0, un] = [0, anI] for each n, the associated
sequence of approximating functions {2~2)(f; x)} does not converge for some
IE Ca'

In the construction of the above example, the assumption that (wn - un) =
(wn - anI) = o(un) is necessary in order to show that {Mo(1 K~2) I)} is not
bounded. In particular, the condition (vn - un) = (an2 - CXnI) = o(anI) is
necessary (although not sufficient) for the argument. We see then that if the
sequence of kernels {K~2)} constructed in the example peaks, and if an2 does not
get too close to anI, in the sense that

(3.7)

then {2~2)(f; x)} converges uniformly. We find, however, that condition (3.7)
is still not sufficient to prove convergence for an arbitrary sequence of 4-zero
operators. An example which shows this is given in [2].

The crux of the problem lies in the manner in which the set S of points
between [0, a] and the graph of K~2)(t) is distributed with respect to [CXnI , an2].
If K~2)(t) is such that most of the mass of S is sufficiently concentrated above
[cxn2 ,a] as n -+ 00 the integrals MoO K~2) I) may become unbounded. This
possibility can be eliminated by requiring K~2)(t) to satisfy certain
monotonicity conditions on [cxn1 , an2] and on [0, anI]'

The above remarks are generalized and made precise in the following
definition and theorem.

DEFINITION 4. Let {K~k)(t)} be a sequence of 2k-zero kernels which peaks,
k ?: 2. If there are k - 1 sequences of numbers {fJni}~:::t such that

(i) ani < fJni < an.i+1 ,

(ii) each I K~k)(t)1 decreases on each of the intervals [0, anI], [fJni' an.i+1],
i = 1,... , k - 1,
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(iii) lim~<I,
n--H1J CXn ,i+l

HOFF

i = 1,2,... , k - I,

then the sequence {KAkl} is said to be well-distributed. (Note that condition (iii)
implies

lim~ < I,
n--'JoOO CXn,i+l

i = I, ... , k - I).

THEOREM 3. Let {2':['l} be a sequence of 2k-zero operators which peaks,
k ;;:: 2. If the associated sequence of kernels {K~kl} is well-distributed, then
{2'(~klf; x)} converges uniformly to fE Ca'

Proof We first prove the theorem for the case k = 2. Let

and Dn = ( K~2)(t) dt.
~n2

We show, first, that An is bounded. Define a sequence of even functions {Kit)}
by

t E (-a, a).

If a ::j:: 00, extend Kit) to the whole real line by continuity and periodicity
with period 2a. Then Kn(t) E Ca . Since KA2)(t) is a 4-zero kernel,

and

Therefore, {Kn} is a sequence of 2-zero kernels, and {Kn} peaks since the only
simple zeros of Kn are ±cxnl • Furthermore, since fL(CXn2) - fL(t) and K~2l(t)are
positive decreasing functions on [0, CXnl]' so is Kn(t). Thus, the sequence of
operators {2'n} defined by {Kn} satisfies the hypothesis of Theorem 2, so that
{2'n} converges uniformly. By Theorem Ib, {Mo(IKn I)} is bounded, say by M.
Then

i.e.,

for all n. (3.8)
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Since {K~2)} is well-distributed, there is a sequence {,enI} such that
(XnI < ,enI < (Xn2 and ,enl/(Xn2 ~ TJ < 1. Hence, iXnI/iXn2 ~ TJ < 1. By Fact 5,
p.(cxnI)/P.(CXn2) ~ TJ' < 1. Therefore, (3.8) yields

An < M/(l - TJ'), for all n. (3.9)

Next, we show that Dn is bounded. Since {K~2)} is well-distributed, I K~2)(t)1
decreases on [,en1 , cxn2 ). Hence, there is an hn > 0 such that with

En = ("1 I K~2)(t)1 dt
~"1

we have

and

The situation is illustrated in Fig. 4.

K~) (t)

a

(3.10)

FIG. 4. 4-zero kernels.

By the same argument used in establishing inequality (3.3), we have

(3.11)

Since p.(t) is strictly increasing on [0, a), there are positive numbers en < 1
such that

(3.12)
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Therefore, from (3.10), (3.11) and (3.12), we have

o = ( /-,(t) K~2)(t) dt = {nt /-,(t) K~2)(t) dt _ (nt /-,(t) I K~2)(t)1 dt
o 0 (Xnl

- {no /-,(t) I K~2)(t)1 dt + { /-,(t) K~2)(t) dt
Bnt O:n2

> - /-,({Jnl) Bn - enhn(rxn2 - (Jnl) /-,(rxn2) + /-,(rxn2) Dn
= [en/-,(rxn2) - /-,({Jnl)] Bn - [cn/-,(rxn2)] An

+ [(1 - en) /-,(rxn2)] Dn + !en/-,(rxn2)' (3.13)

Divide this inequality through by /-,(rxn2) > 0 to obtain

Bn (en - ~~~~~) + Dn(1 - en) < e..(An - t). (3.14)

From the definition of en, we have Cn(rxn2 - (Jnl) /-,(rxn2) = (rxn2 - (J1I1) /-,(g),
where (Jnl < g< rxn2 ; hence

en = /-,(g)/ /-,( rxn2) > /-,({Jnl)/ /-,( rxn2)'

The coefficient of Bn in (3.14) is therefore positive, so that we have

O D
en(An - t)

< n < (1 - en)

By Fact 6, there exists as> 0 such that Cn ~ S < 1, and from (3.9), An is
bounded. Hence, so is Dn • It follows that {Mo<l K~2) I)} is bounded. By
Theorem la, then, {.2'~2)(f; x)} converges uniformly to f(x) E Ca .

We now proceed by induction on k. Assume the theorem is true
for k = m - 1. We show that it is true for k = m. Let {K~m)} be a sequence
of well-distributed 2m-zero kernels which peaks. Define a sequence of even
functions {Kn(t)} by

K..(t) = I-'(rxnm) - I-'(t) K~m)(t), t E (-a, a).
I-'(rxnm)

If a "* 00, extend Kn(t) continuously and periodically to the whole real line,
so that Kn E Ca • By a similar argument as was used in the 4-zero case, we can
conclude that {Kn } is a well-distributed sequence of (2m - 2)-zero kernels which
peaks, and the only positive simple zeros of Kn(t) are the first m - 1 positive
simple zeros of K~m)(t). Thus, the sequence of operators {.!l'n} defined by {Kn}
satisfies the induction hypotheses, and therefore {.2'n(f; x)} converges uni
formly to f(x). By Theorem Ib, {Mo<l Kn I)} is bounded, say by M. Define

f"ni (m)
Ani = I Kn (t)I,

.J an,i_l

i = 1,... , m - 1, rxno = O.
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Then

M ~ Mo(1 Kn J) = -(1 ) fa I fL(IXnm) - fL(t)/1 K~m)(t)1 dt
fL IXnm -a

> fL(~nm) (:"_1 I fL(IXnm) - fL(t) I I K~m)(t)1 dt

> fL(IXnm)( - '{(IXni) Ani' i = 1,... , m - 1. (3.15)
fL IXnm

Since {K~m)} is well-distributed, there exist sequences {fJni} such that
lXni < fJni < IXn,i+l and fJni/IXnm < fJn;/IXn.i+1 ~ 'TJ < 1. Hence, IXn;/IXnm ~ 'TJ < 1.
By Fact 5, for all large n, fL( CXni)/ fL( cxnm) ~ 'TJ' < 1. Therefore, (3.1 5) yields

Ani < M/(1 - 'TJ'), i = 1,... , m - 1. (3.16)

Now define

Bn = (n,m-1 I K~m)(t)1 dt, Cn = rnm
I K~m\t)1 dt,

(Xn.m-l 8n ,m-l

Dn = r I K~m)(t)1 dt.
O:nm

We show that Dn is bounded. Assume m is even. Since I Kn(t) I decreases on
[fJn.m-1 , cxnm), there is an hn > 0 such that

m-1
ClI = hiIXnm - fJn.m-1) = L (-I)i+lAni - Bn + Dn - t (3.17)

i=l

and

rnm

fL(t) I Kn(t) Idt < hnrnm

fL(t) dt = hnCn(lXnm - fJn.m-1) fL(IXnm)
8n ,m-1 Bn,m_l

where 0 < Cn < 1. Therefore, if we apply the same procedure used in deriving
(3.13) in the case k = 2, we obtain

a (m-2)/2
o = f fL(t) Kn(t) dt > L fL(IXn.2i)(An.2i+l - An.2i)

o i=l

- fL(fJn.m-1) Bn - CnfL(IXnm) Cn + fL(IXnm) Dn .

If we now substitute the expression for ClI in (3.17) into the above relation,
divide through by fL(IXnm), delete all positive terms (except the Dn term) from
the right side of the resultant inequality, and solve for Dn , we obtain

1 (m-2) /2 fL( IX -) m /2 )o < Dn < -1_ L ( n.2') An,2i + Cn L An.2i- 1 .
Cn i=l JL IXnm i=l
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By Fact 6, en ~ 0 < 1 for some 0, and from (3.16), all Ani are bounded,
i = 1,..., m - 1. Hence, Dn is bounded. A similar argument can be used to
show that Dn is bounded for m odd. This, together with (3.16), implies
{Mo(1 K~m) I)} is bounded and, hence, {2~m)(f; x)} converges uniformly
to f E Ca • This completes the induction step and the theorem is established.

Remarks

In the definition of a sequence of 2k-zero kernels we required that
Mo(K~k») = 1 and MilL, K~k») = O,j = 1,... , k, for each n. These conditions,
however, may be slightly weakened by requiring only that

j = 0, 1, ... , k,

where 00 = 1, OJ = O,j ~ 1, and that, for at least one j ~ 1, MilL, K~k») ~ 0
for all n. All convergence results still hold under this less restrictive definition.

The continuity requirement on K~k) may also be relaxed to include kernels
which have a finite number of jump discontinuities.

Both these modifications can easily be incorporated into the proof of each
theorem.

A discussion on degree of convergence for special classes of 2k-zero
operators and a method for constructing 2k-zero operators will be presented
in a subsequent article.

REFERENCES

1. P. L. BUTZER, Representation and approximation of functions by general singular
integrals, lA, IB, Nederl. Akad. Wetensch. Proc. Ser. A 63 (1960), 1-24.

2. J. C. HOFF, "Approximation with Kernels of Finite Oscillations," Thesis, Purdue
University, Lafayette, Indiana, 1968.

3. P. P. KOROVKIN, Linear operators and approximation theory, Hindustan Publishing
Corp., Delhi, India, 1959.

4. G. G. LORENTZ, "Approximation of Functions," Holt, Rinehart and Winston, New
York, 1966.

5. F. SCHURER, On linear positive operators in approximation theory, Thesis, Technological
University, Delft, Netherlands, 1965.

Printed in Belgium


